5.3 Magnetism and Gauss's Law
In Chapter 1, we studied Gauss’s law for electrostatics. In Fig 5.3(c), we see that for a closed surface represented by i , the number of lines leaving the surface is equal to the number of lines entering it. This is consistent with the fact that no net charge is enclosed by the surface. However, in the same figure, for the closed surface ii , there is a net outward flux, since it does include a net (positive) charge
The situation is radically different for magnetic fields which are continuous and form closed loops. Examine the Gaussian surfaces represented by i or ii in Fig 5.3(a) or Fig. 5.3(b). Both cases visually demonstrate that the number of magnetic field lines leaving the surface is balanced by the number of lines entering it. The net magnetic flux is zero for both the surfaces. This is true for any closed surface.
Consider a small vector area element
where ‘all’ stands for ‘all area elements
where q is the electric charge enclosed by the surface.
The difference between the Gauss’s law of magnetism and that for electrostatics is a reflection of the fact that isolated magnetic poles (also called monopoles) are not known to exist. There are no sources or sinks of
Thus, Gauss’s law for magnetism is: The net magnetic flux through any closed surface is zero.