9.4 Total Internal Reflection
When light travels from an optically denser medium to a rarer medium at the interface, it is partly reflected back into the same medium and partly refracted to the second medium. This reflection is called the internal reflection.
When a ray of light enters from a denser medium to a rarer medium, it bends away from the normal, for example, the ray \( AO_{1}B \) in Fig. 9.12. The incident ray \( AO_{1}\) is partially reflected (\(O_{1}C\) ) and partially transmitted (\(O_{1}\) B) or refracted, the angle of refraction (r) being larger than the angle of incidence (i). As the angle of incidence increases, so does the angle of refraction, till for the ray \(AO_{3}\) , the angle of refraction is π/2. The refracted ray is bent so much away from the normal that it grazes the surface at the interface between the two media. This is shown by the ray \(AO_{3}D\) in Fig. 9.12. If the angle of incidence is increased still further (e.g., the ray \(AO_{4}\) ), refraction is not possible, and the incident ray is totally reflected.
This is called total internal reflection. When light gets reflected by a surface, normally some fraction of it gets transmitted. The reflected ray, therefore, is always less intense than the incident ray, howsoever smooth the reflecting surface may be. In total internal reflection, on the other hand, no transmission of light takes place.
The angle of incidence corresponding to an angle of refraction 90°, say ∠A\(O_{3}\) N, is called the critical angle (\(i_{c}\) ) for the given pair of media. We see from Snell’s law [Eq. (9.10)] that if the relative refractive index of the refracting medium is less than one then, since the maximum value of sin r is unity, there is an upper limit to the value of sin i for which the law can be satisfied, that is, i = i\(c_{}\) such that
\[ \sin i_{c}=n_{21} \]
For values of i larger than \(i_{c}\) , Snell’s law of refraction cannot be satisfied, and hence no refraction is possible.
The refractive index of denser medium 1 with respect to rarer medium 2 will be \(n_{12}\) = 1/sin\(i_{c}\) . Some typical critical angles are listed in Table 9.1.
A demonstration for total internal reflection
All optical phenomena can be demonstrated very easily with the use of a laser torch or pointer, which is easily available nowadays. Take a glass beaker with clear water in it. Add a few drops of milk or any other suspension to water and stir so that water becomes a little turbid. Take a laser pointer and shine its beam through the turbid water. You will find that the path of the beam inside the water shines brightly.
Shine the beam from below the beaker such that it strikes at the upper water surface at the other end. Do you find that it undergoes partial reflection (which is seen as a spot on the table below) and partial refraction [which comes out in the air and is seen as a spot on the roof; Fig. 9.13(a)]? Now direct the laser beam from one side of the beaker such that it strikes the upper surface of water more obliquely [Fig. 9.13(b)]. Adjust the direction of laser beam until you find the angle for which the refraction above the water surface is totally absent and the beam is totally reflected back to water. This is total internal reflection at its simplest.
Pour this water in a long test tube and shine the laser light from top, as shown in Fig. 9.13(c). Adjust the direction of the laser beam such that it is totally internally reflected every time it strikes the walls of the tube. This is similar to what happens in optical fibres.
Take care not to look into the laser beam directly and not to point it at anybody’s face.
9.4.1 Total internal reflection in nature and its technological applications
- Mirage: On hot summer days, the air near the ground becomes hotter than the air at higher levels. The refractive index of air increases with its density. Hotter air is less dense, and has smaller refractive index than the cooler air. If the air currents are small, that is, the air is still, the optical density at different layers of air increases with height. As a result, light from a tall object such as a tree, passes through a medium whose refractive index decreases towards the ground. Thus, a ray of light from such an object successively bends away from the normal and undergoes total internal reflection, if the angle of incidence for the air near the ground exceeds the critical angle. This is shown in Fig. 9.14(b). To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object. Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts. Some of you might have noticed that while moving in a bus or a car during a hot summer day, a distant patch of road, especially on a highway, appears to be wet. But, you do not find any evidence of wetness when you reach that spot. This is also due to mirage.
- Diamond: Diamonds are known for their spectacular brilliance. Their brilliance is mainly due to the total internal reflection of light inside them. The critical angle for diamond-air interface (≅ 24.4°) is very small, therefore once light enters a diamond, it is very likely to undergo total internal reflection inside it. Diamonds found in nature rarely exhibit the brilliance for which they are known. It is the technical skill of a diamond cutter which makes diamonds to sparkle so brilliantly. By cutting the diamond suitably, multiple total internal reflections can be made to occur.
- Prism: Prisms designed to bend light by 90° or by 180° make use of total internal reflection [Fig. 9.15(a) and (b)]. Such a prism is also used to invert images without changing their size [Fig. 9.15(c)]. In the first two cases, the critical angle \(i_{c}\) for the material of the prism must be less than 45°. We see from Table 9.1 that this is true for both crown glass and dense flint glass.
-
Optical fibres: Nowadays optical fibres are extensively used for transmitting audio and video signals through long distances. Optical fibres too make use of the phenomenon of total internal reflection. Optical fibres are fabricated with high quality composite glass/quartz fibres. Each fibre consists of a core and cladding. The refractive index of the material of the core is higher than that of the cladding.
A bundle of optical fibres can be put to several uses. Optical fibres are extensively used for transmitting and receiving electrical signals which are converted to light by suitable transducers. Obviously, optical fibres can also be used for transmission of optical signals. For example, these are used as a ‘light pipe’ to facilitate visual examination of internal organs like esophagus, stomach and intestines. You might have seen a commonly available decorative lamp with fine plastic fibres with their free ends forming a fountain like structure. The other end of the fibres is fixed over an electric lamp. When the lamp is switched on, the light travels from the bottom of each fibre and appears at the tip of its free end as a dot of light. The fibres in such decorative lamps are optical fibres.
The main requirement in fabricating optical fibres is that there should be very little absorption of light as it travels for long distances inside them. This has been achieved by purification and special preparation of materials such as quartz. In silica glass fibres, it is possible to transmit more than 95% of the light over a fibre length of 1 km. (Compare with what you expect for a block of ordinary window glass 1 km thick.)